
Final Project
Presentation

CS3710-002: Full-Stack Web
Development

William Maddock

12/06/2024

Web App
Description

Overview: The AccessClearance Hub is a web application
designed to streamline the process of managing and
verifying access clearance levels for employees or
contractors within an organization. Core functionalities
include user authentication, clearance request
submission, approval workflows, and automated clearance
expiration notifications.

Audience: The app is designed for organizational
administrators, security personnel, and employees who
need to manage or request access clearances efficiently.

Tech Stack: The application leverages Ruby on Rails for
backend development, Bootstrap for responsive frontend
design, and Docker for environment consistency and
deployment.

User Story

Content
As a Logistics Manager, I want
to approve or deny clearance
requests so that I can ensure
only authorized personnel gain
access to sensitive areas

Example Scenarios
Scenario 1: A Shipping Agent
submits a request for clearance
to access a restricted lab. The
Logistics Manager reviews the
request, checks the Shipping
Agent’s credentials, and
approves it.

Scenario 2: A Shipping Agent’s
clearance has become inactive.
So, either the administrator or
the Logistics Manager revoked
the clearance.

Visuals: UML Diagram

Lo-Fi
Mockups

Mockup Screenshots: Include a
wireframe of the “Create Access
Request” page specifically designed
for Shipping Agents. The wireframe
should display a drop-down list for
access points, a date and time
selection widget, and a submit button.

Explanation: This mockup aligns with
the user story by enabling Shipping
Agents to request access to areas
outside their current clearance. It
supports the scenario where the
agent needs temporary access,
streamlining the approval process by
forwarding the request to their
supervisor.

Visuals: Wireframe for Access Request
Page

Docker Setup
Purpose: Docker was used to ensure environment
consistency across development, testing, and
deployment. By containerizing the application, the
setup process becomes streamlined, reducing the
likelihood of issues due to differences in developer
environments. It also simplifies deployment and
provides an isolated workspace for running the
application.

Setup: The Docker image was built using the
following command:

docker buildx build -t
bigwill12/msucs3710_name_it_whatever .

The application is run using the following
command to map the local directory and
ports:

docker run -it -p 3000:3000 -v
"$(pwd):/workspace"
bigwill12/msucs3710_name_it_whatever

Inside the Docker container, the Rails server is
started using this command:

rails server -b 0.0.0.0

Visuals: Screenshot of Docker in action.

Note: Docker and Ruby on Rails setup followed the
instructions provided in the linked Google Drive
resource: Docker and Rails Setup.

https://drive.google.com/drive/folders/1I2OlEtuWqUDswm3fBLtl2xvhi6cQTIzV

Version
Control

Purpose: Version control is essential for tracking
changes and maintaining a reliable development
history. It ensures that any mistakes can be
reverted without losing progress.

Usage: The project is hosted on GitHub, where
meaningful commit messages describe each
change. Commit messages follow a clear format,
such as:

“Add user authentication functionality”

“Fix bug in access request form validation”

Workflow: The branching strategy used includes:

Main Branch: Stable version of the
project, ready for deployment.

Sprint Branches: Separate branches for
Sprint01 and Sprint02.

Pull Requests: Feature branches are
reviewed and tested before merging into
the main branch to ensure stability.

Testing with
RSpec

BDD and TDD: The application follows both Behavior-Driven Development (BDD) and Test-
Driven Development (TDD). Using RSpec, BDD is applied by writing system tests that simulate
user interactions with the web application, ensuring the behavior aligns with user stories. TDD
is demonstrated by creating model tests to validate business logic and application integrity
before implementing features.

Examples:

1. System Test:
The spec/system/restricted_area_access_spec.rb file includes tests for:

Requesting elevated access and receiving approval or denial.

Viewing elevated access request details.
Handling pagination and filtering of requests.

Example 1:

scenario "Shipping agent requests access and gets approved" do

visit root_path
Test steps...

expect(page).to have_text "Approved"

End

This test validates end-to-end workflows, ensuring that roles interact with the system
as intended.

2. Model Test:

The spec/models/elevated_access_request_spec.rb file validates the
ElevatedAccessRequest model for required attributes such as user, access_point, and
reason.

Example 2:

context "without an access point" do

it "is not valid" do
elevated_access_request.access_point = nil

expect(elevated_access_request).not_to be_valid

end
End

HTML/CSS
Purpose: The user interface for the web stack
demonstrates the foundational design and
responsiveness of the application, showcasing basic
but functional styling. The design ensures clear
navigation and intuitive interaction with the
application’s core features while adhering to industry
standards for web development.

Examples:

1. Navigation Bar:

Simple navigation bar styled for clarity,
featuring links to key areas such as “Home,”
“Access Requests,” and “Account.”

Example: Bootstrap’s navbar component is used
for responsive navigation across different
screen sizes.

2. Forms:

Access request forms styled with Bootstrap’s
form-control and btn classes to ensure a
consistent and user-friendly look.

Example: Dropdown menus for access points
and date pickers for request scheduling are
styled for ease of use.

3. Layouts:

The layout is built with Bootstrap’s grid system,
ensuring that the application adapts to various
screen sizes, providing a responsive and clean
user experience.

Example: Single-column layout for mobile
devices and multi-column layouts for desktop
views.

Accessibility
Principles: The application follows the Web Content
Accessibility Guidelines (WCAG) to ensure inclusivity and
usability for all users, including those with disabilities. Key
principles include:

Perceivable: Ensuring all information is presented in
ways users can perceive (e.g., text alternatives for non-
text content).

Operable: Designing interfaces usable by keyboard and
assistive technologies.

Understandable: Creating predictable navigation and
error handling.

Robust: Ensuring compatibility with a wide range of
user agents, including assistive technologies.

Examples:

1. ARIA Labels:

Added ARIA labels to form elements for users relying
on screen readers.

Example: Buttons and dropdowns include descriptive
labels such as aria-label="Submit Access Request".

2. Keyboard Navigation:

Ensured all interactive elements (e.g., links, buttons,
and form fields) are accessible via keyboard navigation
(e.g., Tab and Enter keys).

Focus indicators are visible to guide users through the
interface.

3. Color Contrast:

Used Bootstrap’s accessible color palette to maintain
sufficient contrast ratios for text and UI components.

Example: Buttons and text meet the contrast
requirements for readability.

4. Error Feedback:

Clear error messages provided in forms, with alerts
accessible via screen readers.

Security
Principles: The application incorporates essential security measures to protect user
data and ensure a secure user experience:

User Authentication: Implemented using the devise gem for secure login,
registration, and session management.

Data Validation: Enforced model validations to prevent invalid or malicious data
input.

Role-Based Access Control (RBAC): Defined user roles (admin, viewer,
shipping_agent, etc.) to restrict permissions and safeguard sensitive operations.

Examples:

1. Authentication with Devise:

Code Snippet (from app/models/user.rb):

devise :database_authenticatable, :registerable,

:recoverable, :rememberable, :validatable

This configuration ensures secure password handling, account recovery, and
session persistence.

Registration Form (from app/views/devise/registrations/new.html.erb):

The form incorporates proper validations and secure password entry fields:

<%= f.password_field :password, autocomplete: "new-password", class: "form-
control" %>

<%= f.password_field :password_confirmation, autocomplete: "new-password",
class: "form-control" %>

2. Role-Based Access Control (RBAC):

User roles are defined using enum in the User model, ensuring controlled access to
various functionalities:

enum role: { admin: 0, editor: 1, viewer: 2, shipping_agent: 3, logistics_manager: 4
}

Custom methods like can_request_access? and can_edit_items? enable granular
permission checks, protecting sensitive actions.

3. Data Validation:

The User model enforces strict validation of critical fields:

validates :email, presence: true, uniqueness: true

validates :username, presence: true, uniqueness: true

validates :role, inclusion: { in: roles.keys }

This prevents duplicate records, invalid emails, or unauthorized role assignments.

Model-View-
Controller

Explanation:

The Model-View-Controller (MVC) architecture organizes
application logic into three interconnected components:

1. Model: Manages the data, logic, and rules of the
application. In this application:

User: Represents users with attributes and methods for
authentication and permissions.

Profile: Stores detailed user information such as personal
and professional data.

ElevatedAccessRequest: Handles access request data,
statuses, and associations with users and access points.

2. View: Presents data to the user and collects input.
In this application:

index.html.erb: Displays a list of elevated access requests,
forms for filtering/searching, and actions like
approve/deny.

3. Controller: Processes user inputs, interacts with
the model, and selects the view to render. In this
application:

ElevatedAccessRequestsController: Manages CRUD
operations for elevated access requests, ensures user
permissions, and handles approvals/denials.

This separation improves code modularity, making the
application easier to maintain and scale. For instance, the
ElevatedAccessRequestsController processes user actions
(e.g., approve/deny), while the ElevatedAccessRequest
model ensures data integrity, and the index.html.erb view
ensures that users only see what they need.

Diagram: Custom diagram showing interactions between
Model, View, and Controller.

Database
Overview

Purpose: The database schema serves as the
backbone of the application, organizing and
structuring data to support functionality. It facilitates
secure access management, user profiles, and record
tracking. The key components of the schema include:

Users: Stores user information such as credentials,
roles, and access levels, enabling role-based
permissions and authentication.

Profiles: Extends user data with personal details like
bio and avatar.

Elevated Access Requests: Tracks requests for access
to restricted areas, associating each request with a
user and an access point. Includes status
management for approval workflows.

Access Points: Represents physical or virtual locations
with an associated access level, aiding in access
control logic.

Access Logs: Records user access attempts with
timestamps and success status, enabling audit trails
and monitoring.

These tables are interconnected through foreign key
relationships, ensuring data integrity and enforcing
referential constraints.

Diagram: Entity-Relationship Diagram (ERD) or
schema screenshot.

Object and
Database

Relationship
Explanation:

In Rails, Object-Relational Mapping (ORM) is managed through Active
Record, which connects Ruby objects to database tables. Each model
represents a table, and attributes correspond to columns in that table.
Relationships between objects are defined using methods like
belongs_to, has_many, and has_one, enabling complex interactions.

For example, in our application:

The User model represents the users table.

The ElevatedAccessRequest model represents the
elevated_access_requests table.

Relationships like “a user has many elevated access requests” are
defined in the model files, bridging the database and object layers.
Visuals: Code snippet showing a model's relationship definitions.

Code Example:

The following snippet demonstrates ORM relationships and definitions
for User and ElevatedAccessRequest models.

User Model (app/models/user.rb):

class User < ApplicationRecord

Associations

has_many :elevated_access_requests

has_one :profile

Enum for roles

enum role: { standard: 0, logistics_manager: 1, shipping_agent: 2 }

Validations

validates :username, presence: true, uniqueness: true

validates :email, presence: true, uniqueness: true

end

ElevatedAccessRequest Model (app/models/elevated_access_request.rb):

class ElevatedAccessRequest < ApplicationRecord

 # Associations

 belongs_to :user

 belongs_to :access_point

 # Scopes for status filtering

 scope :pending, -> { where(status: 'pending') }

 scope :approved, -> { where(status: 'approved') }

 scope :denied, -> { where(status: 'denied') }

 # Validations

 validates :reason, presence: true

End

Relationship Mapping:

1. Database Relationship:

users table has a one-to-many relationship with the elevated_access_requests table.

elevated_access_requests connects to access_points via foreign keys.

These relationships are enforced with t.references and add_foreign_key in migrations.

2. Object Interaction:

A User object can fetch its related elevated access requests with user.elevated_access_requests.

ElevatedAccessRequest retrieves its associated User with request.user.

Reflection
Learning Outcomes: Throughout the development of this
application, I gained significant experience in several key areas of
software development:

1. Full-Stack Development:

I worked on both the front-end and back-end of the application. This
included setting up models, migrations, and controllers for the
database, as well as implementing user interfaces with HTML, CSS,
and JavaScript.

I also utilized Rails as a backend framework, including its Active
Record ORM to manage data, and incorporated Devise for user
authentication.

2. Database Management:

I developed and maintained an efficient database schema to support
the app’s features, with a focus on relationships between models,
data integrity, and optimization.

I gained proficiency in writing migrations and managing relationships
using Active Record associations like has_many, belongs_to, and
has_one.

3. Testing:

I gained experience in writing and running tests using tools like
RSpec and Capybara to ensure the application functions correctly.

I also applied Test-Driven Development (TDD) principles to ensure
that new features were implemented with a high level of code
reliability.

4. Agile Development:

The development process was iterative, with frequent feedback
loops that allowed for continuous improvement. I practiced agile
methodologies, using tools like Trello to manage tasks and user
stories.

5. Security Practices:

Implementing secure user authentication with Devise taught me the
importance of password encryption, session management, and other
security practices such as protection against SQL injection and cross-
site scripting (XSS).

Challenges and Solutions:
1. Challenge: Managing complex
relationships between tables, such as users and
access requests, was initially difficult, especially in
terms of ensuring data integrity and proper
foreign key constraints.
Solution: I took time to understand how Active
Record associations and foreign key constraints
work. I then refactored and structured the
migrations to ensure that the relationships were
properly defined and maintained across the app.
Additionally, I used tools like rails db:rollback to
iteratively test and adjust the schema.
2. Challenge: Implementing user
authentication with Devise posed a challenge,
particularly with configuring password resets and
managing user sessions securely.
Solution: I closely followed Devise documentation
and used online forums and tutorials to
troubleshoot specific issues. I also wrote tests to
ensure that the authentication system worked
seamlessly, which helped pinpoint any bugs or
configuration issues.
3. Challenge: Implementing real-time
access log tracking for users was more complex
than expected due to managing timestamps and
frequent updates.
Solution: I solved this by breaking down the
process into smaller steps and using background
jobs to handle logging asynchronously. I also
utilized database indexes to improve the speed of
read operations on log data.
4. Challenge: Ensuring the application
remained responsive and user-friendly, especially
with dynamic forms for access requests.
Solution: I used JavaScript and AJAX to improve
user experience by asynchronously submitting
forms and updating UI elements without needing
full-page reloads.

Future Improvements:
1. Real-Time Notifications:
Implementing a notification system that
alerts users about changes to their access
requests (approved, denied, etc.) in real-
time using technologies like ActionCable or
WebSockets.
2. Role-Based Dashboards:
Developing more customized dashboards
based on user roles (e.g., administrators,
logistics managers, standard users) would
enhance the user experience and provide
more focused access control.
3. Improved Analytics and Reporting:
Adding more sophisticated reporting
features, such as generating reports on user
access history, request statuses, and
frequent access points, would provide more
insights for administrators and help in
decision-making.
4. Mobile Optimization:
Optimizing the user interface for mobile
devices could enhance usability, particularly
for users who need to access the application
on the go. Using frameworks like Bootstrap
or Tailwind CSS could aid in achieving this.
5. Multi-Factor Authentication
(MFA):
Adding multi-factor authentication to
improve security for users, particularly for
those with elevated access levels, would be
a valuable addition to the app.

By reflecting on these experiences and
challenges, I can continue to evolve as a
developer and refine the features and user
experience of the app for future iterations.

	Slide 1: Final Project Presentation
	Slide 2: Web App Description
	Slide 3: User Story
	Slide 4: Lo-Fi Mockups
	Slide 5: Docker Setup
	Slide 6: Version Control
	Slide 7: Testing with RSpec
	Slide 8: HTML/CSS
	Slide 9: Accessibility
	Slide 10: Security
	Slide 11: Model-View-Controller
	Slide 12: Database Overview
	Slide 13: Object and Database Relationship
	Slide 14: Reflection

